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Abs t rac t  

A solution of the Abraham-Lorentz equation of  motion for a radiating particle is found 
to have nonrunaway form if its mass components  are subject to nonuniform acceleration. 
By supposing that the energy radiated is absorbed by the particle's own field, inertia is 
found as a resulting property and the relation E = Mc 2 follows as a consequence. 

Daboul (1974) has written about the persistence of  the runaway solutions 
in the nonrelativistic Abraham-Lorentz equation of  motion for a radiating 
particle: 

2 e a 
- - " ' =  m(H ~x) (1) Fext(t) = mH - 5 e 3 x  

He proved that this equation and a version containing higher derivatives ofx( t )  
wilt always have runaway solutions if T > O. 

To avoid such runaway or preaccelerated solutions it is interesting to 
examine the form that the mass parameter rn may take so as to transform 
the equation to one for which r = 0. Indeed, we will seek to give physical 
definition to m as that property of  the particle that assures that there is no 
runaway and so seek to explain inertia on this basis and in terms of  the 
electrical behavior of  the particle. 

When the charge e is accelerated, pulses of  radiation are propagated radially 
at speed c. A pulse having reached radius c t  has to work upon an effective 
mass element 6re( t )  as that of  the electrical field energy 5 W(t) remaining to 
be accelerated. Thus we have 

6 W(t) = eZ/2(ct)  (2) 

Also, since an electric field E is needed to develop the acceleration, the force 
on e is Ee. We wilt now suppose that acceleration proceeds as a discrete series 
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of quantum events and that the whole force Ee goes to accelerate the 
element fm( t )  as the pulse is propagatedl Thus we have 

Ee = 6 re(t) ~ (3) 

Acceleration becomes a discontinuous phenomenon and varies throughout 
the particle field. 

At a point P in the wave zone distant et from the particle center O the 
electric field disturbance that gives rise to energy radiation is, according to 
Wilson (1946), of the form 

e2 sin O/cat (4) 

where 0 is the angle between OP and the direction of E or the accelerationS. 
The classical energy radiation -~ [e2(~)2/c 3] fit in time fit is deduced by 

integrating the energy density attributable to this field term (4) for an 
elemental volume 2~r(et) z sin 0 edtdO between limits 0 = 0 and 0 = ~r, and then 
doubling to allow for the equal contribution of magnetic field energy on the 
basis of  Maxwell's equations. By introducing E, however, we find that (4) is 
modified to 

egg sin O/c3t - E sin 0 (5) 

and, since energy density arises from the squaring of this term, to find the 
time-dependent terms we are left with a quantity 

(e~ 0t2 sin 20 (6) Sill 2Ee~ 

- c 3 - - 7  

This can be written as 1 - if(E) as a factor of the first term where 

2cStE 
¢(E) = - -  (7) 

e2 

Then equation (1) becomes 

2 e  2 
Fext(t) = mX - ~ ~3~'[t - if(E)] (8) 

The condition for no runaway solution is then that ~O(E) be unity. From (7) 
and (2) and (3), this requires a special relationship between the quantity 
fm ( t )  and the electric field energy f W(t). It  is simply 

f W(t) = fm( t )c  2 (9) 

We are thus led to the relationship E = Me 2, where E has now its meaning as 
the energy attributable to the massM. This was not implicit in the analysis, 
and it therefore has been derived as a consequence of our finding a solution 
to the Abraham-Lorentz equation. 
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